Estimating Bayes factors via thermodynamic integration and population MCMC
نویسندگان
چکیده
A Bayesian approach to model comparison based on the integrated or marginal likelihood is considered, and applications to linear regression models and nonlinear ordinary differential equation (ODE) models are used as the setting in which to elucidate and further develop existing statistical methodology. The focus is on two methods of marginal likelihood estimation. First, a statistical failure of the widely employed Posterior Harmonic Mean estimator is highlighted. It is demonstrated that there is a systematic bias capable of significantly skewing Bayes factor estimates, which has not previously been highlighted in the literature. Second, a detailed study of the recently proposed Thermodynamic Integral estimator is presented, which characterises the error associated with its discrete form. An experimental study using analytically tractable linear regression models highlights substantial differences with recently published results regarding optimal discretisation. Finally, with the insights gained, it is demonstrated how Population MCMC and thermodynamic integration methods may be elegantly combined to estimate Bayes factors accurately enough to discriminate between nonlinear models based on systems of ODEs, which has important application in describing the behaviour of complex processes arising in a wide variety of research areas, such as Systems Biology, Computational Ecology and Chemical Engineering.
منابع مشابه
A Study of Population MCMC for estimating Bayes Factors over Nonlinear ODE Models
Higher resolution biological data is now becoming available in ever greater quantities, allowing the complex behaviour of fundamental biological processes to be studied in much more detail. The area of Systems Biology is in desperate need of methods for inferring the most likely topology of the underlying genetic networks from this oftentimes noisy and poorly sampled data, to support the constr...
متن کاملMarginal likelihood estimation via power posteriors
Model choice plays an increasingly important role in Statistics. From a Bayesian perspective a crucial goal is to compute the marginal likelihood of the data for a given model. This however is typically a difficult task since it amounts to integrating over all model parameters. The aim of this paper is to illustrate how this may be achieved using ideas from thermodynamic integration or path sam...
متن کاملSpecies delimitation using genome-wide SNP data.
The multispecies coalescent has provided important progress for evolutionary inferences, including increasing the statistical rigor and objectivity of comparisons among competing species delimitation models. However, Bayesian species delimitation methods typically require brute force integration over gene trees via Markov chain Monte Carlo (MCMC), which introduces a large computation burden and...
متن کاملModels for estimating bayes factors with applications to phylogeny and tests of monophyly.
Bayes factors comparing two or more competing hypotheses are often estimated by constructing a Markov chain Monte Carlo (MCMC) sampler to explore the joint space of the hypotheses. To obtain efficient Bayes factor estimates, Carlin and Chib (1995, Journal of the Royal Statistical Society, Series B57, 473-484) suggest adjusting the prior odds of the competing hypotheses so that the posterior odd...
متن کاملCovariate Selection in Hierarchical Models of Hospital Admission Counts: a Bayes Factor Approach
The Bayes factor is employed to select covariates for a hierarchical model applied to a collection of hospital admission counts. Integrals representing the Bayes factor numerator and denominator marginal probabilities are intractable for the model used. We examine three approaches to integral approximation: Laplace approximation, Monte Carlo integration, and a Markov chain Monte Carlo (MCMC) ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2009